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Abstract. Formulas are presented for restricted Har-
tree-Fock (RHF) calculations on systems with period-
icity in one dimension using a basis set of contracted
spherical Gaussians. Applying Fourier-space and
Ewald-type methods, all lattice sums appearing in the
formulation have been brought to forms exhibiting
accelerated convergence. Calculations have been carried
out for infinite chains of Li, molecules and a poly(oxy-
methylene) chain. The methods used here yield results
that are far more precise than corresponding direct-
space calculations and for the first time show the
vanishing of the RHF density of states at the Fermi
level for situations of partial band occupancy. Our initial
computational implementation was about 5 times slower
than the fastest direct-space RHF code, but improve-
ments in special-function evaluations and numerical
integrations over the Brillouin zone are shown to remove
this disparity in computing speed.

Key words: Restricted Hartree—Fock — Fourier space —
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1 Introduction

Quantum mechanical calculations for systems with
periodicity in one dimension provide important support
for the interpretation and prediction of the electronic
and molecular structures of large regular oligomers
and polymers [1]. In that context, Hartree—-Fock-based
methods are central since they often constitute a
reference for the more approximate approaches and a
consistent starting point for those going beyond the
single determinant level.
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Common to methods for periodic systems is the oc-
currence of lattice sums which can lead to ambiguous
results when not evaluated to suitable convergence.
Numerous contributions have been published on trun-
cations and/or approximate schemes to circumvent the
convergence problems [2-6]. These investigations have
essentially been made for the direct-space linear combi-
nation of atomic orbitals (LCAQO) realisation of the re-
stricted Hartree-Fock (RHF) method (RHF-LCAO)
when Gaussian-type basis functions are used. Though
substantial improvements have been noted with these
schemes they remain unsatisfactory because of the ab-
sence of control of the accuracy and lack of balance
among the various contributions.

It is only recently that the Fourier-space formulation
of the RHF-LCAO method [7] for systems with peri-
odicity in one dimension [8§—10] has been considered to
deal with the lattice summations of both the classical
electrostatic and exchange terms. A method based on a
combination of the Poisson formula and the Ewald
technique has been developed to compute these lattice
summations consistently to within a specified numerical
accuracy [11, 12]. The method has been implemented
in a prototype computer program (FTCHAIN) using
s-type Gaussian basis functions. Comparative studies
[12—-16] with the PLH direct-space code [17] have proved
the efficiency and stability of the Fourier-space method
in situations where both approaches normally provide
comparable results, i.e. large-gap systems and localised
atomic bases. Even in such favourable situations, the
tests have revealed that the direct-space code has unex-
pected difficulties in providing converged classical elec-
trostatic and exchange lattice-sum contributions. For
instance, in the case of the poly(oxymethylene chain),
—(CH,—0),—, discrepancies between the results ob-
tained from PLH (with lattice summations carried out
as accurately as that code presently permits) and



FTCHAIN occur in the third significant digit [12, 16].
These differences are of Coulombic as well as exchange
nature and can be reduced below the sixth significant
digit only by using increasingly localised atomic func-
tions. Furthermore, a significant achievement possible
with the Fourier-space approach, not attained so far
with direct-space codes, is the ability to yield the van-
ishing of the RHF density of states at the Fermi level in
situations of partial band occupancy [12—-14].

The present Fourier-space implementation leads,
however, to computing times 5 times longer than with
the PLH code (probably the most efficient to date for
one-dimensional systems) [17]. Another point still un-
solved is the control of accuracy in the integration over
the Brillouin zone (BZ).

One purpose of this contribution is to propose direc-
tions to make the Fourier-space algorithm competitive
with corresponding direct-space codes such as PLH and
CRYSTALD95[18]. The article begins with a brief overview
of the basic Fourier-space RHF-LCAO equations (Sect.
2), following which working expressions are provided for
the case of s-type Gaussian functions (Sect. 3). An anal-
ysis in Sect. 4 shows that computation of electron—elec-
tron interaction can be improved in at least two ways.
Practical methods are proposed for accomplishing this.

2 Fourier-space RHF-LCAO expressions for systems
of one-dimensional periodicity

In the RHF approximation, the electronic wave function
is a Slater determinant built from one-electron orbitals
of Bloch type. The RHF-Bloch orbitals, ¢,(k,r), are
doubly occupied up to the Fermi energy, Ep, and are
orthonormalised as shown in the following equation

<(Pn’<k/’r)|(/)n(k7 l‘)> = 5k’k 5n’n y (1)

where k£ and n are the wavenumber and the band index,
respectively. In the notation used here, k is expressed in
units of 2m/sg, so being the cell length, and is defined in
the BZ, whose length is 27 /sy, i.e., k € [-1/2,1/2]. The
Bloch orbitals

1) =3 em()by (k1) (2)

are expressed in terms of Bloch sums b, (k,r)
b,(k,x) = (2N + 1)1 Zexp(iZﬂ:mk)Xp[r — (p + me.)so|

= (2N + 1)7'2 N " exp(i2mmk) 12 (r) 3)

where p and the vector p (in units of cell length sp),
respectively, represent the label and the position of
atomic orbital y, in the reference unit cell. The quantity
(2N +1)""? is the normalisation factor for a polymer
containing 2N + 1 (N — o0) unit cells. In the following,
the indices p, ¢, r and s denote atomic orbitals and the
number of electrons per unit cell is n.. The direction of
periodicity is defined by the unit vector e, and the lattice
sites are identified by integers m, m’ and m” (with values
0, £1,£2,...,+N).

The normalization condition, in terms of Bloch sums
and forn=n" and k =k, is

Z (ke 1)[by(k, ¥))cqn(k) = ZC;n(k)Spq(k)cqn(k)
pa
=1, (4)
where Sy, (k) are the overlap matrix elements
k) = (by(k,x)|by(k,x)) . (5)
The density matrix elements, P,,(k), are given by
Z k)eqn(k)0n (k) (6)

with the occupation function, 0,(k), defined as

_[2 ifE,(k) <EF
On (k) = {0 if E,(k) > Ep °’
where E,(k) is the energy of band n.
The expansion coefficients, c,,(k), and the one-elec-

tron energy eigenvalues, E,(k), are solutions of the
following system of equations

> Foy(k)egn(k) = En(k) > Sp(k)cgu(k) (7)
q q

in which F, (k) are the Fock matrix elements given by

qu(k) = qu(k) + Cpq(k) +qu(k) ) (8)
where Cp, (k) = Vjy(k) + Jpy(k). Tpy(k) is the kinetic en-
ergy term,

Tpq(k) = (bp(k,1)| = 397 |bg(k, 7)) ©)

Voq(k) is the electron—nuclear attraction term,

Vi (k) = —<b,,(k DIDZ Z Ir— (A + m'e.)so| "

X bq(k,r)> , (10)
Jpq(k) is the electron—electron repulsion term,
Il) =N+ 1) [ @Y Pl R) (1)
BZ r,s
where
pqrs kk/ / dl’] dl‘2b* l’]) ,l‘])‘l‘]*l‘z‘il
X bi(k  x2)bs(k' 1) (12)
and X, (k) is the exchange term,
1
Xll) = =5 2N+ 1) [ a¥ 3 Bl o k. K)
57 X
(13)
where
Xoorg (b, K') = / / dry drs (K, 11 )by (K ) — 1ol
X br (K, r2)by(k,r2) (14)

Z4 and the vector A (in units of cell length sy) are the
charge and the position of nucleus 4, respectively.
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In the Fourier space, the expression for the Coulomb
term, Cp,(k), is

—1 dq,
Cpq(k) = (1s0) ;/q(2)+m,zqu(k7an’)

[ / di’ (ZPN —qy ))

- ZZA exp(—i2nq,, - A)| , (15)

where g5 = ¢; + 47, Qv = (¢x, 9y, m') and dgq, = dg.dg,,
q belng the Fourier transform variable. The exchange
term in Fourier space is written as

1
Xpg(k) = =3 (ms0)” / dk’ZP” (3

XZ/ m+k k'

X Srq (k7 _qm+k—k’) ) (16>

in which q,,,_p = (¢x,gy,m +k —k'). In Eqgs. (15) and
(16), Spy(k,q) are the generalized overlap matrix ele-
ments,

Spq(k Zexp i2mmk)
2n m
X <x2 exp(zgq-r) Xq> . (17)

3 Matrix elements for s-type Gaussian atomic basis sets

)2 Sps (klv qm+k—k’)

The explicit forms for the quantities needed in actual
calculations using s-type Gaussian basis functions are
provided here without detailed derivation: this can be
found in Ref. [12]. The obvious cases such as overlap
and kinetic energy matrix elements are not reproduced
here. In the case of a contracted basis set of s-type
Gaussian atomic orbitals, the Coulomb term is written
as

(,L)p U)q
ZZDaprq (k) (18)
a=1 b=
with
W,
/ dk/ZPrv k/ Z Dchdv abcd(k k/)
BZ

(19)

The indices a, b, ¢ and d refer to the Gaussian functions,
w, is the number of primitives in the expansion
representing the atomic orbital p and D,, is the
contraction coefficient. In the expressions which follow,
o, 1s the exponent of a Gaussian function and a the
location of its centre in units of sy, with decomposition
a=aj+ a.e, to the xy-plane and z projections. The
Coulomb integrals, Cupeq(k, k'), are expressed as

Capea (b, k') = (m50) ' SEVSI e (k, ') (20)

with

) _ (T — 2% (g —ag)’s2) . (2l
ab ) P\ o, (o a0 (21)

Due to the use of Poisson summation and Ewald
techniques for efficient calculation of lattice sums, the
Coulomb contribution, Ic(k K')=1L(k, k') + I (k. K),
is split in two parts: Ik, K)|G +IV(k k’)|Tz and
I (k, KNG+ 1L (ke )2 The explicit forms of the indi-
Vldual terms are glven below

In the interval [0, 7], the electron—electron repulsion
part of the Coulomb term is written as
KKl

=212 3" N exp(i2mmk) exp(i2nm"k')S5), S5

ab,m* cd,m"

- \/71¢T1F° (v fﬁ (P-Q-— m’ez)zﬂ (22)

and the electron—nuclear attraction part is
1 (k, )|§
= 212 3" exp(i2nmk) exp(i2nm"K')S'5), S5

ab,m"™ cd,m"

( (P—A- mez)z)

P-A- m>)} Y

m m’

xz[

m'

P Q-m e2)2>

m  m

xZn_lZZA{

1 ( 72
_ F
Voi+tn \0+1

where

1/2
S(Z) _ Vi _ g Op bz _
abm (oca ) Pl (m +

(24)
and where
p_ % + ap(b + me;) (25)
Ol + oty
oc + oy (d 4+ m'e;)
= . 26
Q- MM (26)

The xy and z projections of P are Py and P.. Fy(x) is a
function related to the error function, erf(x),

Flo) =3[ er(V3) @)

and, y and ¢ depend on the Gaussian exponents,

n’ 1 1
V=3 +
S5 \%a +0p O+ 0y

2 1
5—”2( > .
S5 \% + op

In the interval [z}, 00] or [12, 00|, the contributions where
m' # 0 and m' = 0 have to be separated. Indeed, these

(28)




expressions include a function which diverges at m' = 0.
For m' # 0, the electron—electron repulsion and elec-
tron—nuclear attraction terms can be treated separately,
leaving a remainder, 12 (k, k'), constituting the combined
m' = 0 terms. Thus,

Ic(k, K2 = TL(k k) 122+ TE (k)| + 12k, K, (29)

in which
Ik, K[
— nz b (k,m") k ,—m') expli2rm’ (P, — Q,)]
/#0
2(Py — Qo)
K N 12 T ( 0 0 30
X 0((/+Tl)m ) V+T1 ) ( )
and

kK = —mng'SE) (K ,0) > 85 (k)

m' #0
X ZZA expli2am' (P, — A4.)]
A

2(Py — Ag)*
XK()((&—F'LQ)W/{%) . (31)

In these expressions, Ky(x,y) denotes the incomplete
Bessel function [19]

[o.¢]

Ko(x,y) = / exp(—xt—)—;>g . (32)

t/t
1

The z components of the generalized overlap matrix
elements, Sﬁ) (k,m'), are calculated using the expres-
sion

@) n_ . % ANRE)
Sy, (k,m') = ;exp [z2nm(k+% T )]Sab’m (33)

or

S ke, m')
T
2 k . — b,
SOWZeXp {z n(m—I— + +0(b> (a )}
1N 2
xexp[—n—za“+ab (k+m+ B ) ] (34)
S5 OlaOlp oy + Ol

whichever provides the rapider convergence for the
current Gaussian-type orbital parameters.

The J and ¥ terms constituting the m’ = 0 contribu-
tion I2(k,k’) individually exhibit singular behaviour
because Ky(x,y) diverges for x — 0. We see from the
following expression

Ko(x,y) = 2Ko(2\/xy) — zoc:

v=1

~

Hrl(.y

(35)

where the E,(y) are exponential integral functions [20],
that the divergence is that of Ky(z), a modified Bessel
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function of the second kind [20], which for small
arguments, z, behaves as

Ko(z) ~ =In(32) = 7. (36)

where y, is the Euler constant.

The singularity in the terms of I (k, k'), however, is
removed by their combination, Wthh leads to the finite
contribution

12(k, k)
— 78 (k,0)5) (K, 0)

2
X {—ln (Po — Q0)2 —E1 <7-52(P0—Q0)> + ngl

Y+ T
X ZZA |}Il(P() — Ao)z + E; ( } .
A

m(Py — A0)2>
(37)

0 + 172
In (Py — Q0)2 +
must be replaced by —y, +

When Py—Q, is also

7Py — Qo) /(1 + 1))
In((y + 71)/7?); a similar remark applies to Py — A.

For s-type Gaussian atomic orbitals, the exchange
term, X, (k), is written as

zero,

Wy Wy

- _Z ZDa,,qu / dk"> " Py (k)
a=1 d= 7S
X ZZDchbSXabcd(k7 k/) . (38)
c=1 b=1

The exchange integrals are expressed as
KXabea(k, k') = (ms9)~ S£b7)6)S§Z)6>

x (Le(k, K)o + Le (K, K)[) (39)
with
Ly (k, K)[ = 272 Y~ " exp(i2nm'k')

/

m m'

S(Z)

ab.m'~ cd,m"

X Zexp 2nm(k — k')

X LFO n—2(P—Q—mez)2
L/? Y
(P—Q—me) )} (40)

x exp(i2mm’k)SC

1 2
a Y+ <y+r
and

IX(k7k/)|2c
=1 Z S‘(;?) (K
x exp(i2n(m +k — k') (P. — Q.))

><K0<(y+r)(m+k K2, ”(Pyof%)) (41)

sm+k —K)SE) (k, —(m + k — k')
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As explained in Ref. [11] (see Eq. 29), the selection of t
values is made in such a way as to secure a balanced and
still very fast convergence for the lattice sums arising in
each interval i.e. [0, 7] and [z, o).

4 Computational aspects

The calculations with the FTCHAIN program proceed
as depicted schematically in Fig. 1. The steps that
consume the most computer time correspond to the
evaluation of the numerous two-electron integrals, of
which the exchange integrals represent approximately
90% of the total effort. Common to all ab initio
procedures, w, the total number of basis functions, is
responsible for the quality of the RHF results via the
LCAO representation of the one-electron states, ¢,(k, ).
It leads to a growth in the number of two-electron
integrals roughly proportional to w*. In the Fourier
space, it is crucial to keep n; (the number of k£ points in
half the BZ) under control, since it contributes an
additional n? factor to the growth of the number of two-
electron integrals. The equivalent of the n7 factor in
direct space is (2N + 1)*, where (2N + 1) is the number
of interacting cells.

Keeping the same accuracy thresholds as in our pre-
vious work [12-16], i.e. enforcing an accuracy of ten
decimal digits in the various integrals (overlap, kinetic,
Coulomb and exchange), our efforts to improve the
computational efficiency will be on two points: the
evaluation of the two-electron integrals and numerical
integration over k and k.

To check the resulting improvements we consider
two test cases: the infinite chain of lithium molecules,

Spq(k)
7;Q(k)
Voo (k)

S

Calculation of

k, k)
k, k")

pqrs(

Calculation of ;;

PqTS(

Construction of Fp,(k)

Pra(F)

P,y(k) (direct)

Fig. 1. Flow chart of the Fourier-space restricted Hartree—Fock
implementation (the FTCHAIN code)

—(Liy),—, and the poly(oxymethylene) chain,
—(CH,—0),—, a more realistic case. In the case of the
lithium chains, the distance between the lithium atoms in
the unit cell is arbitrarily fixed at 5.0 au. Three values of
the unit cell length are considered here, ag = 10.0, 10.2
and 12.0 au, which correspond to an even distribution of
the lithium atoms along the chain and a symmetry
constrained to the metallic situation, a very slightly al-
ternating case and a more alternating situation, respec-
tively. Calculations were carried out using two s atomic
functions on each atom and the STO-3G basis set. The
Slater exponents used for the STO-3G expansions of the
Li, and Liy orbitals are 2.69 and 0.80, respectively. For
the poly(oxymethylene), a distributed basis set of s-type
Gaussian functions (DSGF basis set) to simulate p-type
functions was used. The exponents and positions of the
basis functions are listed in Table 1. The geometry of the
poly(oxymethylene) chain is the same as in Ref. [16],
where the unit cell length is 4.414704 au.

Three indicators will be considered: energy band
values at selected k points, E,(k), total energy, Et, and
the computing time ratio, rcpy.

4.1 Computation of the two-electron integrals

Special attention was paid to the implementation of the
procedure for the lattice summations occurring in the
working expressions for the two-electron integrals and
the choice of approaches for the efficient computation of
well-known special functions, such as the Fy(x) function.
On the other hand, at the time the bulk of the present
work was carried out, we did not have in hand an
efficient algorithm for the computation of the incomplete
Bessel function, Ky(x,y), which occurs in all the two-
electron integrals. Methods then available to us were
extremely slow when neither of the arguments x or y was
less than unity; however, cases with larger x and y occur
frequently in our calculations, indicating the need for
a better algorithm. Recently, one of us (F.E.H.) has
developed and computationally implemented a proce-
dure for Ky (x,y) which is efficient for the full range of its
arguments [21, 22]. Direct substitution of the new
algorithm into the FTCHAIN program leads consis-
tently to at least a factor 2 in the reduction of the total
computing time of test runs on —(Liy),— and
—(CH,—O),— for n; values of 17 and 33.

Table 1. Exponents and positions (distance from the atom) of the
distributed basis set of s-type Gaussian functions (DSGF basis set)
for the poly(oxymethylene) translational unit cell. s-C,, and 5-O,,
are the s-type Gaussian orbitals that simulate the C and O 2p
orbitals, respectively. The geometry of the poly(oxymethylene)
chain is described in Ref. [16]

Basis function Exponent Distance from the atom (A)
Hi, 0.27095 0.0

Cy, 8.71074 0.0

Cy, 0.25911 0.0

5-Cy, 0.656 0.55751

Oy, 15.89814 0.0

(O 0.50786 0.0

5-02, 0.62 0.39822




4.2 Numerical integration in the BZ

In our previous test applications [12-16] it was found
that with n; equal to 33 ten decimal digits are secured in
the one-electron and total energy values. This level of
accuracy is certainly higher than actually required in
practice. Hence, with the point of view of reducing the
computing cost, while still carrying out the lattice
summations consistently to convergence, we studied
the loss of accuracy accompanying a reduction in 7.

From the data in Tables 2 and 3, it appears that
ni = 17 leads to five-decimal-digit accuracy in the en-
ergy band values for practically all tests and seven-
decimal-digit accuracy for the total energy. In the case
of the total energy that level is not attained for the
metallic —(Li;),— chain, which is not surprising since
the band graph exhibits a logarithmic behaviour near
the Fermi point. This is obviously difficult to repro-
duce with an evenly spaced interpolation based on
17 k points only.

For routine applications on classical systems, i.e.
fully occupied BZ cases, n; equal to 17 is certainly
sufficient. As noted in Tables 2 and 3, the computing
time ratio, rcpy, is reduced by the expected factor
0.27, or (17/33)%. It is worth stressing that by simply
using the new algorithm for Ky(x,y) and ny = 17, the
FTCHAIN program is able to execute on the same
computer equipment the test calculations at the same
speed as PLH.

At this stage, it is fair to recognise that an efficient
and practical way of controlling the accuracy of the
numerical integrations in the BZ is still missing. Indeed,
carrying out separate calculations with increasing num-
bers of k points is no better than the trial-and-error
procedures used in direct space to set the lattice sum-
mation limits. A promising direction for increasing both
the accuracy and cost savings, at least similar to that
achieved by reducing n; from 33 to 17, is to take ad-
vantage of the analytical properties in the BZ of the
k-dependent quantities, especially the two-electron inte-

Table 2. Valence band energies at selected & points, E, (k) (n is the
band index), and total energy per —Li,— unit, Ey, for the infinite
linear chain of lithium molecules, —(Li,),—, with @y = 10.0, 10.2
and 12.0 au using 17 and 33 k points in half the first Brillouin zone.
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grals. These quantities are analytic except in metallic
(degenerate) cases, where they are only continuous [23—
26]. We have noted that the two-electron integrals,
Jpgrs(k, k') and Xp(k, k'), vary smoothly in the BZ as
suggested by typical graphs shown in Figs. 2 and 3. For
—(Liy),— with so = 10.2 au, the graphs of X, (k, k'),
are shown in Fig. 2a and those of P, (k) are shown in
Fig. 2b, where p and s correspond to 2s functions

Table 3. Valence band energies at selected & points, E, (k) (n is the
band index), and total energy, Et, per —CH,—O— unit for the
poly(oxymethylene) chain using 17 and 33 & points in half the first
Brillouin zone. All values are in atomic units. Underlining is used to
highlight differences between the results obtained with ny = 17 and
33. rcpy is the ratio of the total computing time for ny = 17 to
nip = 33

nip = 17 nip = 33

E3(0.0) -1.607974 -1.607978
E5(0.125) —1.596154 -1.596176
E3(0.25) ~1.564612 ~1.564616
E5(0.375) —1.526498 —-1.526519
E3(0.5) -1.507678 ~1.507682
E4(0.0) —0.886881 —0.886881
E4(0.125) —-0.880786 —0.880803
E4(0.25) —0.892096 —0.892097
E4(0.375) —0.959436 —0.959452
E4(0.5) —-0.998490 —-0.998492
E4(0.0) -0.371179 —-0.371180
E7(0.125) —-0.375521 —-0.375500
E7(0.25) —-0.402694 —-0.402695
E4(0.375) —0.465402 —0.465388
E7(0.5) —-0.524603 —-0.524605
E5(0.0) ~0.257598 ~0.257600
E3(0.125) —-0.257515 —0.257490
E5(0.25) —-0.266913 —-0.266915
E3(0.375) —-0.300679 —-0.300667
E3(0.5) —-0.330902 —-0.330906
Er -97.288075 —-97.288082
rCcPU 0.28 1

All values are in atomic units. Underlining is used to highlight
differences between the results obtained with n; = 17 and 33. rcpy
is the ratio of the total computing time for n; = 17 to n; = 33

ap = 10.0 au ap = 10.2 au ap = 12.0 au

ny — 17 I’lk:33 nk:17 I’lk:33 nk=17 nk:33
E5(0.0) -0.211777 -0.211777 —0.208131 —0.208136 —0.186767 —0.186767
E5(0.125) —-0.204973 —0.204973 -0.201475 —-0.201480 —0.181697 —0.181697
E5(0.25) —0.183300 —0.183300 —0.180594 —0.180603 —0.166693 —0.166693
E5(0.375) -0.141711 -0.141711 —0.143195 —0.143189 —0.144405 —0.144405
E5(0.5) —-0.056198 —0.056198 -0.105636 —0.105568 —0.130254 —0.130255
E4(0.0) 0.273511 0.273511 0.262249 0.262251 0.183027 0.183027
E4(0.125) 0.225370 0.225370 0.217220 0.217222 0.159045 0.159045
E4(0.25) 0.132974 0.132974 0.129349 0.129355 0.105930 0.105930
E4(0.375) 0.044510 0.044510 0.046635 0.046627 0.053447 0.053447
E4(0.5) —0.056198 —0.056198 —0.005751 —0.005821 0.028532 0.028533
Et —14.617868 -14.617922 —14.621426 —14.621426 —14.624779 —14.624778
rCPU 0.27 1 0.27 1 0.28 1
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Fig. 2. Graphs of a X, (k, k') and b P,, (k) functions in half the BZ
for the —(Li,),— chain (sp = 10.2 au)

centred on one of the lithium atoms and ¢ and r to 1s
functions located on the other atom. Similar quantities
for the —(CH,—O),— chain are represented in Figs. 3a
and b, where p, g and r are 2p atomic functions centred
on the carbon atom, while s corresponds to the Is
function located on one of the two equivalent hydrogen
atoms. For each of these two illustrative cases, the
selected pgrs quadruples correspond to the X, (k, k)
integrals of largest variation in the BZ out of the full list
of Jygrs(k, k') and X, (k, k') integrals. The P, (k) density
matrix elements correspond to the first two atomic in-
dices of these selected integrals. It is important to note
that the integrals (Figs. 2a, 3a) are quite smooth in
contrast to the P, (k) functions. Furthermore, as already
stressed, the J,gs(k, k') and X, (k, k') integrals are those
actually responsible for the bulk of the total computa-
tional effort. Hence it is conceivable to start from a grid
containing a somewhat reduced number of (k, k) points,
for example, n; with ny = 17, and to fill by two dimen-
sional interpolation the missing values in a table that
would contain n}?> points, for example n, = 33. These
values would be integrated after multiplication with the
more widely varying k-dependent density matrices,
P (k') (see Egs. 15, 16). These observations, which cor-
respond to similar suggestions made by te Velde, open
the prospect of constructing an adaptive numerical
integration technique from which the accuracy of
numerical integrations in the BZ would be controlled
within a single calculation instead of repeating separate
calculations.
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Fig. 3. Graphs of a X,,s(k, k') and b P,, (k) functions in half the BZ
for the —(CH,—O),— chain

5 Concluding remarks

In this article we have provided the general expressions
for s-type Gaussian bases needed to carry out Fourier-
spacec RHF-LCAO band structure calculations on
general systems of one-dimensional periodicity. After
introducing a new algorithm for the calculation of the
incomplete Bessel function, Ky(x,y), and using a more
realistic number of integration points in the BZ, the
Fourier-space RHF-LCAO code (FTCHAIN) efficiency
appears to be comparable to that of the existing direct-
space versions, such as PLH and CRYSTAL9S. In such
comparisons, the standard settings of the PLH program
were used. In both FTCHAIN and PLH, prescreening
based on the magnitude of the overlap matrix elements is
used. An important advantage of FTCHAIN, however,
is that all lattice summations are computed consistently
and to a desired accuracy, thus avoiding the use of
approximate expressions (multipolar expansions, etc.)
and setting summations limits by trial and error.

Interpolation in the (k, k') plane of the two-electron
integrals J,(k, k') and X,,(k, k"), which is possible due
to smooth variation of these terms, and a more careful
definition of the various thresholds for the various
LCAO integrals, opens the prospect of further efficiency
increases. This, however, will be postponed until after
implementation of expressions for atomic functions of
higher quantum number (p, d, ---) [12].
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